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Introduction 35 

The application of “standalone” respiratory muscle training (RMT) to clinical 36 

and athletic populations is now supported by a plethora of systematic reviews and meta-37 

analyses supporting its benefits (1). The most commonly applied method of RMT 38 

adopts the principles of strength training, whereby brief bouts of moderate intensity 39 

respiratory loading (40 to 60% of maximal strength) are applied, resulting variously in 40 

improvements in respiratory muscle strength, power, shortening velocity and endurance 41 

(2). Among RMT modalities, inspiratory muscle training (IMT) is the most commonly 42 

employed method for healthy (1,3) and clinical (4,5) populations. A typical IMT 43 

intervention consists in breathing against an inspiratory load (IRL), twice daily, for five 44 

to seven days per week, for four to twelve weeks (3,4,5). Recently, a high-intensity 45 

inspiratory muscle strength training (IMST) protocol that required 30 breaths (~5 46 

minutes) per session, for 5 to 7 days (25–35 total minutes) per week for 6 weeks, 47 

reduced resting blood pressure in young healthy adults (6), in midlife/older adults (7), 48 

and older adults with obstructive sleep apnoea (OSA) (8). Behind its mechanisms, 49 

IMST improved endothelial function, NO bioavailability, and oxidative stress (7), and 50 

reduced muscle sympathetic nerve activity (8).  51 

IMT has been included as a component of exercise-based cardiopulmonary 52 

rehabilitation programmes. Indeed, randomized controlled trials (RCTs) suggested an 53 

additive effect of inspiratory muscle training (IMT) and aerobic exercise (AE) training 54 

in chronic heart failure (CHF) and chronic obstructive pulmonary diseases (COPD) if 55 

conducted in independent sessions (9,10). IMT plus AE training improved 56 

cardiorespiratory responses to exercise in CHF (9) while providing additional gains in 57 

endurance time and reduced dyspnoea in COPD (10).  58 

However, no study supports the inspiratory loading use during AE in either 59 

sporting or clinical populations. In this research letter, we revisit putative mechanisms 60 

underlying the established benefits of “standalone” IMT in order to support our 61 

contention that IMT need not and should not be used during AE sessions. 62 

 63 

Mechanism 1: The respiratory muscle metaboreflex 64 

 During heavy-intensity exercise, respiratory muscle work requires an average of 65 

14–21% of the cardiac output, potentially “competing” for blood flow (e.g., oxygen and 66 

nutrients) with locomotor muscles. The mechanism by which blood flow competition 67 

arises is suggested to occur via the so-called "respiratory muscle metaboreflex" (11), 68 
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whereby fatiguing activity of the inspiratory muscles leads to accumulation of 69 

metabolites, which stimulate unmyelinated afferents. This stimulation induces a 70 

sympathetically-mediated vasoconstriction within limb locomotor muscles (12), which 71 

hastens locomotor muscle fatigue and exercise limitation (12) and intensifying effort 72 

perceptions. IMT has been shown to increases the threshold for respiratory 73 

metaboreflex activation in healthy (13) and patients with heart failure (5), thereby 74 

improving exercise tolerance.  75 

 76 

Mechanism 2: Reduced respiratory and locomotor effort perceptions 77 

          The hypothesis that IMT improves exercise performance may be explained, in 78 

part, by the reduced respiratory and whole body effort perceptions in athletes (14) and 79 

clinical populations (4) after IMT. The reduced dyspnoea seems to be associated with 80 

improvements in the force-generating capacity of inspiratory muscles after IMT, which 81 

decreases the relative tension for a given level of ventilation (4). During conditions 82 

where elevated ventilation is needed, such as exercise, this adaptation from inspiratory 83 

muscles most likely underpins the diminished respiratory effort (4). IMT also reduces 84 

peripheral effort sensations (14) probably via a reduction in respiratory muscle blood 85 

flow needs and a boosting of oxygen delivery and metabolite removal from to the limbs.  86 

 87 

Mechanism 3: Reduced oxygen cost of breathing 88 

 The oxygen cost of breathing is related directly to the energy requirement of the 89 

respiratory muscles. IMT reduces the oxygen cost of breathing for a given ventilatory 90 

requirement during voluntary hyperpnoea post-IMT (15). Specifically, in highly trained 91 

cyclists, IMT reduced the oxygen cost of breathing at ventilations above 50% of the 92 

maximal oxygen uptake (15). It suggests that IMT, at least in this population, reduces 93 

the energy demand from respiratory muscles during hyperpnoea.  94 

 Thus, in trained individuals, a reduced oxygen cost of breathing most likely 95 

contributes to exercise performance improvements following IMT by reducing their 96 

demand for oxygen, thereby liberating oxygen for use by locomotor muscles. To our 97 

knowledge, this mechanism has yet to be evaluated in clinical populations. 98 

 99 

Mechanism 4: Attenuation of central fatigue  100 

Lastly, we proffer an as yet untested mechanism underpinning the ergogenic 101 

effect of IMT. Exercise intolerance is elicited by a number of interrelated peripheral 102 
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factors, but is also affected by so-called “central fatigue”, which is driven by feedback 103 

from muscle afferents (16). To date, the focus of attention has been upon feedback 104 

originating from locomotor muscles; however, feedback from the respiratory muscles 105 

almost certainly contributes to the ensemble of inputs influencing central motor drive. 106 

Accordingly, we suggest that attenuation of respiratory muscle afferent feedback 107 

following IMT might delay, or attenuate, central fatigue, thereby improving exercise 108 

tolerance. To our knowledge, this has yet to be evaluated directly.  109 

 110 

[insert figure here] 111 

 112 

Figure 1. Putative mechanisms underlying improved respiratory muscle function and 113 

exercise performance following “standalone” inspiratory muscles training (IMT). (?) 114 

indicates that this mechanism is yet to be investigation.  115 

 116 

Does inspiratory loading during exercise have an ergogenic effect? 117 

Finally, we close by considering how knowledge of putative mechanisms 118 

described above should influence the way in which IMT is implemented in practice; 119 

specifically, is there any rationale for loading to be applied during exercise? 120 

A recent systematic review (17) of nineteen studies concluded that inspiratory 121 

loading during AE impairs exercise tolerance due to an inadequate ventilatory (VE) 122 

response. Amongst the twelve studies that reported peripheral oxygen saturation (SpO2), 123 

seven showed a decrease in SpO2. On the other hand, when inspiratory loading was 124 

applied during recovery from high-intensity interval training, a positive effect was 125 

found upon clearance of lactate. The psychophysiological effects of imposing 126 

respiratory loads during exercise are negative and well-established (17), including 127 

increased breathing discomfort, anxiety and intensification of effort during AE.  128 

Accordingly, we argue that imposing an ergogenic intervention, such as 129 

inspiratory loading, during exercise has the same pitfalls as training at high altitude; 130 

specifically, it impairs the quality of the training that can be accomplished, whilst not 131 

providing any additional benefits to sea-level performance (18). Altitude researchers 132 

realised quickly that the benefits of altitude training could be optimised by adopting the 133 

so-called ‘live-high-train-low’ paradigm, whereby the erythropoietic benefits of altitude 134 

exposure were achieved without compromising athletes’ training quality (18). 135 
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Our understanding of the mechanisms that underpin the ergogenic effects of 136 

RMT (see figure 1), as well as the conclusions of the systematic review by López-Pérez 137 

(17), lead to the inevitable conclusion that implementing RMT via respiratory loading 138 

during AE sessions is a mistake. Moreover, this combination may lead to harmful 139 

psychophysiological effects, whilst also being ineffective (17). In contrast, there is 140 

ample evidence that the implementation of “standalone” IMT using resistance-training 141 

principles is well-tolerated and highly effective for a wide range of individuals (19).  142 

The results of RCTs suggest that IMT is a key part of exercise-based cardiac and 143 

pulmonary rehabilitation programs. However, in these studies, IMT protocols were 144 

conducted in separate sessions, and they provided benefits in cardiorespiratory 145 

responses to exercise and reduced dyspnoea in CHF (9) and COPD patients (10), 146 

respectively. Based on the current literature, it is recommended to combine IMT with 147 

AE in separate sessions. In summary, using inspiratory loading during AE may have a 148 

negative impact, whereas performing IMT and AE in separate sessions allows for 149 

sufficient recovery and may lead to additional physiological enhancements compared to 150 

just doing IMT or AE training alone. 151 

 152 

Conclusions and future directions 153 

Finally, there is one context in which we recommend further research into the 154 

effects of combining RMT with other forms exercise. A single study has investigated 155 

the combination of IMT with whole body, “functional” strength training (19). The data 156 

suggested that a standalone IMT provided a foundation of improved inspiratory muscle 157 

strength and core muscle functions. Furthermore, a follow-on programme of IMT, 158 

combined with simultaneous core muscle training exercises, enhanced core muscle 159 

function further, as well as and providing cumulative benefits to running performance. 160 

The mechanistic rationale for this approach is the role of the respiratory musculature in 161 

trunk stabilisation (2), as well as in balance (20). To underscore, a strong foundation of 162 

standalone IMT was the first step of the aforementioned study and, in our opinion, is 163 

crucial to support the combination of IMT with other forms of strength training.  164 

 165 
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