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Diaphragm Dysfunction as a Contributor to Breathlessness
after COVID-19 Infection

There will be few readers of this journal who have not had some
exposure to patients with coronavirus disease (COVID-19), although
the acute pandemic has now been brought under control by
vaccination and attenuation in virus severity. Nevertheless, because
of the number of patients infected, there are nowmillions worldwide
experiencing post-COVID symptoms. The post-COVID syndrome is
a symptom complex that persists at least 3 months after the initial
infection and comprises a wide range of symptoms, of which dyspnea
is present in 30% of patients (1). In some cases, investigation will
identify a cause for dyspnea, but in others, it remains unexplained,
which prompts the question whether diaphragm weakness could be
an explanation.

Regmi and colleagues were drawn to this hypothesis partly as
a result of initial investigations in 10 patients, which they have
already reported (2) and which are included again in the current
study. However, other data also make this a plausible hypothesis,
including the direct identification of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in 4 of 26 patients in whom
postmortem diaphragm biopsies were available and, more
importantly, a specific pattern of fibrosis (and corresponding
gene expression) compared with patients who succumbed to
non–COVID-related acute lung injury (3). Of course, the
phenomenon of ventilator-induced diaphragm dysfunction is not
new (4), and disentangling this effect from a specific effect of
COVID-19 is difficult. Supportive data include the observation of
thinning of the diaphragm in patients with COVID-19 not ventilated
for their illness (5); these patients, of course, should have exhibited
increased work of breathing protecting them from diaphragm
atrophy. Respiratory muscle weakness can also occur as a result of
nerve dysfunction, and phrenic nerve mononeuritis has been
reported as a complication of COVID-19 (6). Interestingly, in the
original description of neuralgic amyotrophy by Parsonage and
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Turner (7), published before the advent of clinical virology, the
cause was attributed to a mild fever, which was probably viral, in
11 of 136 patients.

Investigating diaphragm dysfunction is difficult, and an
important strength of the study by Regmi and colleagues in this issue
of the Journal (pp. 1012–1021) is that the investigators, who are one
of the most experienced groups in this field globally, used state-of-
the-art techniques (8). Essentially, most commonly used
measurements, for example, mouth or nasal pressures, rely on the
patient making a maximal voluntary effort, which is difficult even in
highly motivated individuals. The alternative is to use a nerve
stimulation technique in which the measured variable is independent
of patient effort (9). In the present study, Regmi and colleagues
magnetically stimulated the phrenic nerves bilaterally, placing the
stimulator coil over the cervical spine at the point where the cervical
nerve roots forming the phrenic nerves exit. Measurements were
made at end-expiratory lung volume (FRC), which the investigators
were able to confirm by inspection of the esophageal pressure trace
measured directly from an esophageal balloon, and appropriate care
was taken to minimize the effects of prior contractile activity (termed
potentiation). They also used the technique of twitch interpolation to
assess the degree to which patients could activate their diaphragm.
The principle here is that a stimulus is delivered while the patient
makes what they regard as a maximal effort. If it is a truly maximal
effort, no additional effect of phrenic nerve stimulation is observed,
whereas if, say, 75% of the nerve fibers are activated, the twitch
produced by phrenic nerve stimulation is reduced by 75%. A similar
approach was used to assess expiratory muscle strength by placing the
stimulator coil at the 10th thoracic intervertebral space.

Regmi and colleagues studied a group of COVID survivors for a
mean of 15months after their illness who had required ventilation
and a second group who had been admitted to the hospital but had
required oxygen therapy alone. The control group was age-matched
control subjects without illness studied prepandemic; the paper
would have been strengthened, of course, had they also studied
patients with mild or asymptomatic disease and also if they had
studied patients with acute lung injury due to non-COVID causes.
They found that both groups of patients had reduced diaphragm
strength (measured as twitch transdiaphragmatic pressure),
expiratory muscle strength (measured as Twitch T10 gastric pressure
[Tw T10 Pga]), and contractility (measured as diaphragm thickening
ratio), but the weakness was not different between the ventilated
group and those who required oxygen alone. This latter observation
argues to some extent in favor of a virus-specific, as opposed to a
disease severity–specific, etiology. In addition, when the entire patient
group was stratified by breathlessness severity measured using the
Medical Research Council (MRC) dyspnea scale, those with severe
dyspnea had the most profound diaphragm weakness; data from the
twitch interpolation part of the study suggest that this is due to a
primary problem of peripheral nerve and/or muscle rather than a
central activation problem.

So where does this leave the clinician? Older readers will
recall Campbell and Howell’s aphorism that “a respiratory
physiologist offering a unitary explanation for breathlessness
should arouse the same suspicions as a tattooed archbishop
offering a free ticket to heaven” (10), and even the authors’ own
data show (Figure 3 in Reference 8) that some of the patients

experiencing severe dyspnea have normal diaphragm strength.
Nevertheless, this study adds to an emerging body of evidence
that phrenic nerve and/or diaphragm dysfunction is a contributor
in some patients. This is helpful because although there is no
proven way of restoring diaphragm or phrenic nerve function, the
experience from neuralgic amyotrophy is that function usually
returns over a 2- to 5-year time frame (11), which patients and
their physicians may find reassuring. Moreover, this observation
provides both a rationale and pilot data for designing and
conducting trials of inspiratory muscle training in patients with
post-COVID syndrome. �
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