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Abstract

Long COVID, the prolonged illness and fatigue suffered by a small proportion of

those infected with SARS-CoV-2, is placing an increasing burden on individuals and

society. A Physiological Society virtual meeting in February 2022 brought clinicians

and researchers together to discuss the current understanding of long COVID

mechanisms, risk factors and recovery. This review highlights the themes arising
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from that meeting. It considers the nature of long COVID, exploring its links with

other post-viral illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome,

and highlights how long COVID research can help us better support those suffering

from all post-viral syndromes. Long COVID research started particularly swiftly in

populations routinely monitoring their physical performance – namely the military

and elite athletes. The review highlights how the high degree of diagnosis, inter-

ventionandmonitoringof success in theseactivepopulations can suggestmanagement

strategies for the wider population. We then consider how a key component of

performance monitoring in active populations, cardiopulmonary exercise training,

has revealed long COVID-related changes in physiology – including alterations in

peripheral muscle function, ventilatory inefficiency and autonomic dysfunction. The

nature and impact of dysautonomia are further discussed in relation to postural

orthostatic tachycardia syndrome, fatigue and treatment strategies that aim to combat

sympathetic overactivation by stimulating the vagus nerve. We then interrogate the

mechanisms that underlie long COVID symptoms, with a focus on impaired oxygen

delivery due to micro-clotting and disruption of cellular energy metabolism, before

considering treatment strategies that indirectly or directly tackle these mechanisms.

These include remote inspiratory muscle training and integrated care pathways

that combine rehabilitation and drug interventions with research into long COVID

healthcare access across different populations. Overall, this review showcases how

physiological research reveals the changes that occur in longCOVID and howdifferent

therapeutic strategies are being developed and tested to combat this condition.

KEYWORDS

cardiovascular, coagulation, dysautonomia, fatigue, long COVID, ME/CFS, respiratory,
SARS-CoV-2

1 INTRODUCTION

Long COVID, persistent post-COVID symptoms of 12 weeks or more,

threatens individuals, populations and economies, with an estimated

1.4million individuals affected in theUKalone, and144million globally

(Ayoubkhani & Pawelek, 2022;Wulf Hanson et al., 2022). The problem

of post-viral syndromes is not new, but the scale and the speed of

this global challenge necessitate joined-up thinking across traditional

clinical and academic silos. As long COVID is an emerging condition, its

epidemiology, risk factors and mechanisms must be identified in order

to understand its aetiology, aid diagnosis and inform novel treatment

strategies, which themselves need to be assessed while being made

accessible to an ever-increasing patient cohort. New research and

ongoing investigations and treatment trials are critical for combatting

a condition with such significant impacts on population and individual

health. This paper reflects many perspectives from a recent Physio-

logical Society meeting (‘Long COVID: Mechanisms, Risk Factors and

Recovery’), which brought together diverse research groups tackling

long COVID, to enable a greater understanding of the condition and

identify directions for future research and treatment.

2 THE IMPORTANCE OF DATA IN CLASSIFYING
LONG COVID

It is vital that long COVID is consistently described as a condition

and that prevalence rates are accurately assessed, but neither of

these are straightforward. Long COVID study design and recruitment

can dramatically affect estimates of prevalence, reported symptoms

and their duration, and associated risk factors. Additional factors

to consider are including testing status, presentation and duration.

Measuring the prevalence and incidence of long COVID is therefore

fraught with difficulty, though vital if the impact on individuals and

society is to be adequately addressed.

In the early days of the pandemic, many people experiencing

community-managed COVID-19 could not access COVID-19 testing

and could not be recruited to studies. Therefore, long COVID rates

were initially estimated in patients who had been hospitalised – in

which post-intensive care unit illness and disability was expected (up

to 87%) (Carfì et al., 2020). Later, due to patient pressure, long COVID

in non-hospitalised populations started to be recognised (Assaf et al.,

2020).
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Diagnosis from symptom clusters has been challenging, as long

COVID symptoms (fatigue, headache, brain fog, musculoskeletal pain,

shortness of breath (SoB), chest pain) are common in the general

population (Kirmayer et al., 2004). Non-controlled studies cannot

therefore readily discriminate levels and severity of symptoms

between those with or without exposure to COVID-19. This is

compounded by pandemic responses such as lockdowns and school

closures, which resulted in increased stress levels, social isolation,

modified lifestyle habits, reduced physical activity, relationship

difficulties, and social and economic insecurity for many people,

independently associatedwith increasedphysical symptoms (Kirmayer

et al., 2004). Additionally, without pre-illness participant baseline data,

the impact of COVID-19 on pre-existing symptoms cannot be

determined.

There is no commonly understood definition for symptom duration,

with studies measuring between 3 and 24 weeks – with such

heterogeneity precluding meta-analyses (CabreraMartimbianco et al.,

2021). Further complications exist with the variable vaccination status

and predominant COVID-19 variant over time.

Studies recruiting patients with self-reported long COVID can

describe the characteristics and impact (Ziauddeen et al., 2022),

organ damage and physiological changes (Dennis et al., 2021), but

cannot estimate of prevalence or duration, due to self-selection bias.

Retrospective (post-COVID-19 infection) cohorts help estimate pre-

valence, but may over-estimate the impact of COVID-19 on chronic

symptoms without baseline or comparison groups (Fernández-de-Las-

Peñas et al., 2021).

The strongest study design for understanding prevalence and

duration of long COVID is a prospective cohort, ideally with pre-illness

baseline data, and an equivalent non-exposed comparison group. The

COVID-19symptomtracker appoffers this (Sudreet al., 2021)–people

who log data generally do so before their COVID-19 infection, and

once infected, can be compared to similar loggers who did not have

COVID-19.Other cohort resources are theUKBiobank (Griffanti et al.,

2021), or population-based electronic health records (Walker et al.,

2021), although the latter is limited by requiring a consultation with a

healthcare professional and correct coding by that professional.

3 PREVALENCE, NATURE AND DIFFERENCE
FROM OTHER POST-VIRAL ILLNESS

Given the above challenges, retrospective cohort studies based on

routinely collected data extracted from electronic health records

(EHR) can help. Such studies do not rely on patients self-reporting

their symptoms, nor on people self-enrolling in studies. They can also

provide baseline data for each patient, as well as control groups.

EHR data from over 81 million individuals, mostly in the USA,

including 273,618 confirmed COVID-19 patients, estimated the

incidence of nine long COVID features 3–6 months after COVID-

19 versus influenza (Taquet et al., 2021). The incidence of any one

feature in the COVID-19 cohort was 42.34%, with prevalence of each

symptom detailed in Table 1. All nine features were more frequently

New Findings

∙ What is the topic of this review?

The emerging condition of long COVID, its

epidemiology, pathophysiological impacts on

patients of different backgrounds, physiological

mechanisms emerging as explanations of the

condition, and treatment strategies being trialled.

The review leads fromaPhysiological Society online

conference on this topic.

∙ What advances does it highlight?

Progress in understanding the pathophysiology and

cellular mechanisms underlying Long COVID and

potential therapeutic andmanagement strategies.

TABLE 1 Proportion of symptoms experienced following acute
COVID-19 at 1–180 and 90–180 days post-illness (Taquet et al., 2021)

Proportion of symptoms (%)

Symptom 1−180 days 90−180 days

Anxiety/depression 22.82 15.49

Abnormal breathing 18.71 7.94

Abdominal symptoms 15.58 8.29

Fatigue/malaise 12.82 5.87

Chest/throat pain 12.60 5.71

Other pain 11.60 7.19

Headache 8.67 4.63

Cognitive symptoms 7.88 3.95

Myalgia 3.24 1.54

reported afterCOVID-19 than after influenza (overall excess incidence

16.60%, hazard ratio range 1.44–2.04, all P < 0.001), with symptom

co-existence significantly more likely than after influenza. When long

COVID features were represented as a network of symptoms (each

node is a symptom, each edge represents their likelihood to co-occur),

this network was found to be more densely connected as time from

COVID-19 infection increased. In other words, when a post-acute

symptomwas recorded, itwasmore likely to co-occur in a constellation

with other symptoms (compared to acute phase). Notably, 30%of post-

influenza individuals had at least one feature recorded 3–6 months

post-infection. While this was significantly less than after COVID-19,

this is not a trivial incidence andmight indicate that part of the burden

of long COVIDmight be attributed to a generic post-infection illness.

Differences in long COVID features between different patient sub-

groups was also seen. Female patients were more likely to have

headaches, myalgia and abdominal symptoms, and less likely to

have abnormal breathing and cognitive deficits than male patients.

Hospitalised patients and older individuals were more likely to have
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4 ASTIN ET AL.

cognitive problems, abnormal breathing and fatigue, and less likely to

have headaches andmyalgia than non-hospitalised patients or younger

individuals.

Another study by the same group using the same EHRmethodology

(Taquet et al., 2022) found that the risk of developing long COVID

featureswas overall very similar in thosewith andwithout aCOVID-19

vaccination. Vaccination did not reduce risk of anxiety/depression,

headache, abdominal symptoms, chest/throat pain, abnormal

breathing and cognitive symptoms. However, certain symptoms,

notably fatigue and myalgia, were less common in the vaccinated

population.

4 LINKS WITH ME/CFS

The increased incidence of symptoms after COVID-19 compared

to influenza suggests some specificity for the type of infection.

However, there are also some similarities between long COVID and

myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Like

long COVID, this is associated with prior viral infection and often

occurs in previously healthy and active people (predominantly females)

(Poenaru et al., 2021). The chronic presentation of both conditions

is similar, with fatigue, brain fog and post-exertional malaise (PEM)

(Singh et al., 2022), impacting on activities of daily living. One study

demonstrated that in those symptomaticwith longCOVIDat2months,

85% still reported symptoms after 1 year (Tran et al., 2022). Long

COVID can have a significant impact on patients’ lives after 6 months,

which may, in some cases, represent evolution to an ME/CFS-like

condition.

Life-altering fatigue is very common in both populations and also

in patients with chronic autoimmune (Davies et al., 2021) or neuro-

logical (Kluger et al., 2013) diseases. In some, this fatigue becomes

severely disabling (van Ruitenbeek et al., 2019). Patients withME/CFS

need daily management of activity levels in order to prevent PEM,

which when severe, can lead individuals to become bed-bound, with

symptoms such as severe postural orthostatic intolerance (POTS),

sleep dysfunction, myalgia, cognitive dysfunction, dysautonomia,

neuro-immuno-endocrine dysfunction, hyperacusis and photophobia

(Carruthers et al., 2011; Stussman et al., 2020).

Similar to long COVID, the lack of a diagnostic test is a significant

hurdle, with many patients diagnosed by excluding other conditions,

or given a diagnosis of ME/CFS after a prolonged period of time (>10

years). Between 80% and 90% of patients never get a clear diagnosis

(Komaroff et al., 1996). Current ME/CFS management options are

limited, with graded exercise therapy removed in 2021 from NICE

guidance as a result of 50% of patients experiencing a deterioration of

their conditions (Kujawski et al., 2020, 2021; NICEGuideline [NG206],

2021). Treatments for depression or other psychiatric illness have

limited benefit.

Once ME/CFS is established, many patients never fully recover

and are ‘forgotten’ by society. However, the burden on families is

enormous, with many families taking on a life-long commitment as

carers. A better understanding of long COVID, a prolonged condition

with many of the same symptoms observed in ME/CFS, therefore pre-

sents anopportunity thatmayalsohelp in understanding andmanaging

patientswithME/CFS,with options for thedevelopment of therapeutic

interventions in a potentially more homogeneous condition.

ME/CFS research can also help with understanding of under-

lying pathophysiological mechanisms, such as dysregulated energy

metabolism (Missailidis et al., 2020; Sweetman et al., 2020; Tomas

et al., 2017, 2020), exercise-induced plasma metabolome alterations

(Germain et al., 2022), dysbiotic gut (Morten et al., 2018; Xiong et al.,

2021) and immune cell dysfunction (Milivojevic et al., 2020). Evidence

of metabolic dysregulation and prolonged immune dysregulation has

also been found in long COVID patients (Phetsouphanh et al., 2022).

This could potentially be due to viral persistence of SARS-CoV-2 or

other viruses, though this has not been demonstrated in ME/CFS

patients (Chang et al., 2021). SARS-CoV-2 persistence of 3–5 months

has been reported in immunocompromised patients, but with no co-

existing symptoms (Gaspar-Rodríguez et al., 2021), and this is an area

of further study (Brodin et al., 2022).

To progress, lessons must be learnt from the poor management

of ME/CFS patients and long term research programmes established

to fully understand the biology behind long COVID and ME/CFS.

Certain insights may arise sooner in populations that have undergone

particularly high levels of scrutiny of the disease course, progression

and effects of interventions. These include individuals in elite athletics

or the military, where physical fitness is key to success and resource-

intensivemonitoring of performance is routine.

5 LONG COVID IN PHYSICALLY ACTIVE
POPULATIONS

Several epidemiological studies have demonstrated that being

physically inactive (performing below WHO recommendations for

regular weekly physical activity) is associated with a 30% increase

in hospitalisation risk (Hamer et al., 2020; Sallis et al., 2021), similar

to having poorly controlled diabetes. Given these findings, it is

unsurprising that athletic individuals, free from chronic illnesses,

typically only develop mild acute symptomatology and rarely require

hospital-based care. However, even professional or international-level

athletes can struggle with protracted symptoms, often scuppering

their competition participation in events such as the Tokyo Olympic

Games (Falkingham, BBC, 2020). In another highly active population,

military personnel, it was also clear early in the pandemic that post-

COVID-19 pathology would impact on the role and deployability of

the UK Armed Forces, although the degree of this was unknown. The

degree of monitoring of physical health, and support structures for

training and rehabilitation that exist for competitive athletes and

the military provide the potential for unique insights into the nature,

pathophysiology and potential treatment regimes for long COVID

sufferers.

The questionnaire-based AWARE I study in South African athletes

showed that acute and post-acute COVID pathology follows a similar

pattern in active individuals to the general population (n = 45)
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(Schwellnus et al., 2021). Acute illness lasted longer than for other

causes of respiratory tract infections, and a cluster of seven symptoms

(‘excessive fatigue’, ‘chills’, ‘fever’, ‘headache’, ‘altered/loss sense of

smell’, ‘chest pain/pressure’, ‘difficulty in breathing’ and ‘loss of

appetite’) were associated with a more protracted return to sport

at 40 days. Similar prolonged symptoms were reported by military

personnel, including fatigue, cough, SoB and mood disturbance and

were more common in those over 40 years of age (Holdsworth et al.,

2022; O’Sullivan et al., 2021).

Prevalence of prolonged symptoms is also similar to the general

population, with approximately 10% of elite athletes preparing for

international-level competition experiencing symptoms for >28 days

(n = 147) (Hull, Wootten, Moghal et al., 2022; Sudre et al., 2021),

with 27% experiencing a delay in full return to sport after 1 month

and 6% still impacted at 90 days. This figure was substantially higher

than pre-COVID data, in which only 4% of athletes had not returned a

month after respiratory tract illness. A delayed recovery was twice as

common in athletes with a symptom presentation involving the lower

respiratory tract (e.g., including SoB ± chest pain). More recent data

from US collegiate-based athletes (n = 3597), revealed a far lower

prevalence of protracted symptoms, at only 0.8% at 28 days (Petek

et al., 2021). Military personnel too showed a reduction prevalence

of long COVID symptoms over time, with incidence reducing between

pre-immunisation wave one (wild-type) and wave two (alpha variant),

likely as a result of increased awareness of the condition, improved

availability of self-management strategies and the predominant SARS-

CoV-2 variant (O’Sullivan, 2022; O’Sullivan et al., 2021). Further work

is planned in the same population of UK Armed Forces to understand

the effects of immunisation, and the delta and omicron variants of

SARS-CoV-2. Vaccination itself is well-tolerated in athletes, with very

few reporting an impact of vaccination on training (Hull, Wootten, &

Wootten, 2022).

Developing intervention strategies potentially helped reduce

the prevalence of prolonged symptoms, and as seen in other

post-viral conditions, the NICE-recommended multi-modal and

multi-disciplinary team (MDT) approach offers holistic patient

benefit in the management of long Covid (NICE guidelines, 2020).

Within the UK Armed Forces, after recognising the need early in the

pandemic, various pathways were created simultaneously, including

remote rehabilitation assessment and subsequent rehabilitation

programmes, a combined occupational and medical assessment clinic

and a longitudinal observational study (Barker-Davies et al., 2020;

O’Sullivan, 2021; O’Sullivan et al., 2021; O’Sullivan, Barker-Davies,

Gough et al., 2021). The key question underpinning these was: How do

we return a physically active population to full health and activity, at

scale, without risk?

Data from these pathways suggest that approximately 2% of

military personnel developed problems following COVID-19, and

two-thirds of those required MDT rehabilitation, including education,

pulmonary rehabilitation, symptom-titrated activity progression,

psychological assessment and input, and occupational support. These

were delivered by self-management and residential programmes,

with a subsequent remote supported self-directed programme. Three

months after these interventions, 91% of individuals who received

them were back in work, some with persistent symptoms, and nearly

all still using strategies they were taught. Patients were armed with

a self-management educational booklet, linking into NHS resources

such as Your COVID recovery. Over the course of the pandemic, these

interventions became more community based, supported by GPs and

allied health professionals, with specialist input reserved for severe or

complex cases.

Cardiopulmonary exercise testing (CPET)was used as a cornerstone

to understand the degree and nature of any limitation, recognising that

most post-COVID-19 symptomology was related to, or worsened by,

exertion (Holdsworth et al., in press, BMJ Military Health). CPET was

used as part of a detailed clinical assessment,which also included blood

tests, ECG, spirometry, cognitive assessment and6-minwalk tests,with

secondary care computed tomography/magnetic resonance imaging

(MRI) if required (O’Sullivan et al., 2021). Reassuringly, extremely

low levels of cardiopulmonary pathology were identified, alleviating

concerns regarding occult organ pathology (Holdsworth et al., 2022),

and paralleling data from athletes. Initially, the early-cited high pre-

valence of myocarditis (i.e. circa 25–50%) delayed return to sport

(Wilson et al., 2020), but these fears were not substantiated, with later

research indicating the prevalence of clinical myocardial events is≤1%

in athletes (van Hattum et al., 2021).

Studies in the military population also helped identify potential

contributing factors to long COVID including objective cognitive

disturbance equivalent to ageing 10 years or exceeding the UK

drink-drive limit, exercise related dysautonomia in up to 25% of

individuals, and exercise-induced ventilatory inefficiency (Holdsworth

et al., 2022; Ladlow et al., 2022). Similar changes were also found in

athletes following COVID-19, with alterations in both cardiovascular

and respiratory response parameters impacting cardiorespiratory

performance during CPET (Fikenzer et al., 2021). Athletes with

long COVID also show symptoms of dysautonomia and ventilatory

inefficiency, reporting perturbations in both their resting heart

rate (HR) and cardiac response to sub-maximal exertion as well

as ‘unsatisfied respiration’ and seemingly disproportionate SoB.

Several of these clinical features appear similar to the condition

of unexplained underperformance or the over-training syndrome,

for example, fatigue and lack of recovery (Lewis et al., 2015). The

precise pathobiological factors underpinning this syndrome remain

elusive, but the commonality of this pathophysiology with long COVID

warrants further investigation.

To understand the medium-long term impact of COVID-19 on the

UK Armed Forces, the longitudinal cohort study ‘Military COVID-

19, Observational outcomes in a Viral Infectious Disease (M-COVID)’

(1061/MODREC/20)was established. Initial findings demonstrate that

fully recovered community-based individuals are no different from a

control population on any parameter 5 months post-illness, but this is

not the case for those who have recovered following hospital-based

illness (Ladlow, O’Sullivan, Bennett et al., 2022; O’Sullivan et al., 2022).

These results suggest that those with initially severe or persistent

symptoms should undergo appropriate investigations, such as CPET,

prior to a safe return to strenuous physical activity.
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Overall, evidence in this population of physically active individuals

suggests a similar presentation and proportion of long COVID to other

populations, despite, on the whole, much less severe initial illness.

Individuals who have had a mild to moderate illness who appear fully

recovered are indeed most likely recovered, allowing resources to be

dedicated to those with prolonged or initially very severe illness. MDT

rehabilitation, either remote or residential, can provide benefit for

most individuals, with detailed assessment, including CPET, helpful to

identify specific limitations.

6 WHAT DOES CARDIOPULMONARY EXERCISE
TESTING TELL US?

As discussed above, CPET is a valuable tool to understand the

limitations to individuals’ performance and thus the nature of required

rehabilitation, but it is also helpful as a research tool to understand

the various physiological processes that become dysfunctional in long

COVID.

A siloed approach to understanding long COVID by individual

medical science specialities is unlikely to provide unifying under-

standing of the underlying pathological mechanisms. As seen above,

exertional limitation and fatigue are both prominent in the described

symptomatology (Heightman et al., 2021) and their investigation

demands an integrated whole-body physiological approach. CPET is a

robust, validated and evidenced method of assessing the multi-system

response to exercise, and as such has been identified as a means by

which to unpick themechanism(s) underlying long COVID.

However, the published evidence is limited by the majority of

studies involving post-hospital patient cohorts. These cohorts vary

significantly from a non-hospitalised long COVID group (Heightman

et al., 2021) and exercise limitation in the setting of a more severe

acute infection might be expected (Herridge et al., 2003, Puthucheary

et al., 2013) independent of COVID-19 specific pathology. However,

it might be argued that SARS-COV-2 pathology significant enough to

cause long lasting pathology in a ‘mild illness’ population should also

be evident in those with more severe initial disease. As such, useful

informationmight be gleaned from studies performed in the latter.

Rinaldo and colleagues studied a group 3 months after hospital

discharge (Rinaldo, Mondoni, Parazzini, Pitari, et al., 2021). There

was no apparent ventilatory limitation, though 55% had a reduced

peak oxygen consumption (V̇O2
) in a convincingly maximal-testing

protocol. The authors concluded that the pattern of early anaerobic

threshold, bluntedoxygenpulse and reduced V̇O2
/work ratewasdue to

deconditioning. However, deconditioning is an imprecise diagnosis – in

common practice, it suggests a passive process of muscle inefficiency,

often secondary to decreased use (e.g., immobility, illness). With no

direct measure of cardiac output or peripheral oxygen uptake, one

cannot, however, exclude the possibility of reduced oxygen delivery or

a more active aetiology of peripheral muscle pathology. Support for

a peripheral muscle dysfunction has been demonstrated at hospital

discharge (Baratto et al., 2021), by using exercise echocardiogram,

arterial blood sampling and resolving the Fick equation to measure

cardiac output and peripheral oxygen extraction. Peak V̇O2
correlated

with disease severity, and reductions in peak V̇O2
correlated with

reduced peripheral oxygen uptake, localising the pathology to the peri-

pheral locomotor muscle. In this study, impaired ventilatory efficiency

was also noted, a combinationof raised respiratory rate anddead space

ventilation, and increased chemosensitivity, a finding also noted by

others at 3months (Cassar et al., 2021; Skjørten et al., 2021).

Exercise limitation persists in the post-hospital cohort, with around

20%of individuals still demonstratingpeak V̇O2
below85%of their pre-

dicted maximum at 6 months (Cassar et al., 2021). Mounting evidence

confirms a similar limitation in community-managed long COVID (de

Boer et al., 2022; Ladlow et al., 2022; Singh et al., 2022). Though

small (n = 10, with matched controls), the study in still-symptomatic

community-treated individuals at 12 months by Singh and colleagues

advances understanding significantly. Using an invasiveCPETprotocol,

the investigators directly measured cardiac output, oxygen delivery

and extraction. In patients, beyond 75% of peak V̇O2
, exercise capacity

was limited by failure to increase oxygen extraction in the periphery.

De Boer and colleagues have suggested this is due to mitochondrial

dysfunction, inferred by an apparent reduction in fatty acid oxidation

during exercise (de Boer et al., 2022), but the control data in this study

are historic and poorly matched, preventing firm conclusions at this

point. However, given the evidence for direct and indirect mechanisms

of mitochondrial impairment in COVID-19 (Cortese et al., 2020; Flynn

et al., 2021;Maoet al., 2020), this hypothesis appearsworthyof further

investigation.

Finally, these studies, as in other populations discussed above, also

note autonomic dysfunction. Reduction in peak HR (Clavario et al.,

2021), chronotropic incompetence (Jimeno-Almazán et al., 2021) and

dysautonomia (Ladlow et al., 2022) have all been documented in long

COVID sufferers, though not always associated with the same pattern

of peripheral muscle CPET limitation as described above, suggesting

dysautonomiamight an additional mechanism of limitation.

These data from CPET studies point us toward a peripheral muscle

mechanismof exercisedysfunction in a significant cohort of individuals.

Understanding this mechanism more fully with deeper phenotyping

might improve understanding of other symptoms of this debilitating

condition. However, it seems multiple processes are at play, including

ventilatory inefficiency, and autonomic dysfunction. Identifying the

presence and interplay of these mechanisms in an individual is

likely to be important in both understanding their symptom set and

personalising targeted therapy.

7 DYSAUTONOMIA AND POTS

As articulated previously, dysautonomia appears to be a feature of

long COVID in several populations, often including alterations in HR

regulation. Syncope and autonomic clinics globally, and including those

of two of the authors (M.D., P.B.L.) have been reporting cases of

cardiovascular autonomic disorders and peripheral autonomic neuro-

pathy, both during and following Covid infection (Abrams et al., 2022;

Blitshteyn & Whitelaw, 2021; Hinduja et al., 2021; Johansson et al.,
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ASTIN ET AL. 7

2021; Shouman et al., 2021). A typical post-COVID presentation

involves SoB, palpitations and dizziness, markedly worse on standing

(orthostasis). This includes postural orthostatic tachycardia syndrome

(POTS), a condition characterised by an increase in HR >30 bpm on

standing, without a drop in blood pressure (BP), accompanied by the

above symptoms (Sheldon et al., 2015).

We systematically examined the head-up tilt responses of 27

individuals whowere referred with long Covid autonomic dysfunction.

Distinct patterns of haemodynamic responses to standing were

observed:

1. POTS – 15% of the cohort

2. POTS, baseline low or normal BP – 4% of the cohort

3. Sub-threshold POTS (sustained HR rise <30 bpm but more than

15% rise from baseline), with baseline hypertension: 33% of the

cohort

4. Sub-threshold POTS, baseline low or normal BP: 30% of the cohort

5. Low baseline BP (systolic BP <100 mmHg in supine position), no

significant HR or BP rise – 4% of the cohort

6. Within normal limits: 15% of the cohort

Markers of increased sympathetic nervous system activity were

evident, with 85% of patients showing HR rise over more than 15%

baseline on standing, and 30% of patients with baseline BP more than

130/80 mmHg. Most (78%) had BP oscillations on standing (variations

in BP with peak to trough systolic BP over >30 mmHg over 120 s),

a predictor of impending vasovagal syncope (Hausenloy et al., 2009)

suggesting haemodynamic instability (Julu et al., 2003; Samniah et al.,

2004).

These findings support those of other groups reporting varying

rates of POTS from 22% to 75% (Blitshteyn & Whitelaw, 2021;

Shouman et al., 2021). Unlike other groups, however (Buoite Stella

et al., 2022; Shouman et al., 2021), no patients in this cohort had

orthostatic hypotension, although 22% had systolic BP <100 mmHg

during the supine phase. This may be due to referral bias to the

cardiology-led service, or due to the small numbers involved in this

study.

While these findings represent a small cohort of patients who have

been referred specifically for tilt table testing, the sympathetic over-

activity is compelling, with most individuals experiencing HR and BP

rise on standing. This suggests autonomic dysregulation – either newly

incident following the infection or unmasked by the infection.

Commonly used medications for cardiovascular autonomic

disorders such as POTS can include fluid expanders (fludrocortisone)

and α-agonists (midodrine) to augment BP, improving cardiac

venous return and thus reducing overshoot sympathetic response.

Additionally, β-receptor blockers can mitigate symptoms from

exaggerated sympathetic and adrenergic responses to orthostasis. The

findings from this small cohort suggest that the former medications

may not be indicated for this subgroup, and β-blockers may be more

helpful. Additionally, these patients are likely to benefit from inter-

ventions modulating the autonomic nervous system which specifically

reduce sympathetic activity and increase vagal tone – such as breath

retraining, HR variability (HRV) biofeedback training, and paced

postural exercises incorporating breathing such as yoga.

8 NEUROLOGICAL CONTRIBUTIONS TO LONG
COVID

The occurrence of dysautonomia and brain fog suggests neuro-

logical contributions to long COVID, and fatigue, one of the most

common post-COVID symptoms, could also be impacted by neuro-

logical dysfunction. To interrogate this, neuronal circuit dysfunction

was investigated in patients suffering from fatigue at least 6 weeks

following amild or moderate COVID-19 infection.

Inflammation is likely to be critical in the pathogenesis of post

COVID-19 sequelae. Individuals with long COVID have elevated

inflammatory markers for several months (Phetsouphanh et al., 2022).

There are multiple physiological pathways by which the immune

system could influence the nervous system and vice versa (Dantzer,

2018). Whatever the molecular trigger, neuromuscular mechanisms

must inevitably contribute to symptomatic fatigue, given that most

common symptoms of post-COVID fatigue relate to physical and

cognitive activity, both of which rely on neural circuitry; however,

which neural systems are affected is not known.

Volunteers with self-reported post-COVID fatigue underwent a

battery of behavioural and neurophysiological tests assessing the

central, peripheral and autonomic nervous systems (Baker et al.,

2022). In comparison to age and sex matched volunteers without

fatigue, differences in specific neural circuits were seen: primary

motor cortex (M1), one of the most important areas for voluntary

movements and driving muscles into action, was less excitable in the

fatigued cohort. Fatigued individuals also had a higher HR and reduced

HRV, both phenomena associated with dysautonomia, which is often

associated with fatigue. Sensory feedback circuits and descending

neuromodulatory control dysregulation were not impacted. Finally,

myopathic changes in skeletal muscle were observed: although the

fatigued cohort had normal levels of strength, after a sustained

contraction, the ability of the muscle to generate force was reduced

compared to controls.

These abnormalities on objective tests may indicate novel avenues

for principled therapeutic intervention and could act as fast and

reliable biomarkers for diagnosing and monitoring the progression of

fatigue over time.

Dysautonomia presents as increased sympathetic to

parasympathetic activity and is associated with fatigue in other

autoimmune disorders. Increasing evidence for vagal dysregulation

following COVID-19 (Dotan et al., 2022; Pan et al., 2021) suggests that

vagal underactivation may be the root cause of this dysautonomia.

Recent studies found that 4–5 weeks of daily non-invasive vagus

nerve stimulation (nVNS) reduced fatigue and inflammatory markers

in patients with autoimmune associated fatigue (Aranow et al., 2021;

Tarn et al., 2019). This strengthens the case that vagal hypoactivity

might be causal in producing fatigue and suggests nVNS might be

an effective therapy for fatigue. A similar approach in those with
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8 ASTIN ET AL.

post-COVID fatigue is under investigation, looking into the effects

of vagus nerve stimulation via the auricular branch on fatigue, and

the physiological, neurophysiological, behavioural and immunological

correlates of fatigue.

Although SARS-CoV-2 is primarily a respiratory infection, it is

a multi-system disease (Merad et al., 2022), including the nervous

system. Understanding how dysfunction affects different interacting

organ systems is important for understanding this disease, and

discovering the abnormal subcellular alterations in function is likely to

be vital for developing effective treatment strategies.

9 MICROCLOTS AND ENDOTHELIAL
DYSFUNCTION

Potential mechanistic explanations for fatigue and other long COVID

symptoms include abnormalities in tissue oxygen availability, due

to vascular dysfunction and hypercoagulation, and mitochondrial

dysfunction disrupting cellular bioenergetics. Coagulopathies and end-

othelial dysfunction are key pathologies during acute and post-acute

COVID-19 (Levi et al., 2020; Pretorius et al., 2021;Willyard, 2020; Zuin

et al., 2022), with the SARS-CoV-2 spike protein potentially activated

by clotting factors (Kastenhuber et al., 2022). These pathologies are

increased even in vaccinated individuals (Al-Aly et al., 2022) and likely

underlie the increased risk of adverse cardiovascular events in COVID-

19 survivors (Xie et al., 2022). It is therefore important to understand

how endothelial dysfunction and coagulopathies arise and how they

impact on tissue function.

Growing evidence also suggests that viral products, immune

cells and/or inflammatory mediators may be central in the

pathophysiological mechanisms that drive the persistent long COVID

symptoms. Several studies show persistence of SARS-CoV-2 RNA

several months after acute infection, though this has not yet been

clearly linked to long COVID symptomology, while acute SARS-CoV-2

infection may dysregulate the immune system to allow reactivation of

other persistent viruses (Proal & VanElzakker, 2021).

Platelets and endothelial cells may interact with viral products

and circulating inflammatory molecules to induce hypercoagulation

(Fogarty et al., 2021; Gavriilaki et al., 2021; Grobler et al., 2020),

blocking small blood vessels and interfering with oxygen delivery.

Inflammatory signalling from a dysfunctional endothelium can trigger

coagulation pathways (Bonaventura et al., 2021). Antibodies from

severe COVID-19 patients can also induce procoagulant platelets

and platelet apoptosis (Althaus et al., 2021). Alternatively, hyper-

coagulation can be triggered by SARS-CoV-2 itself: the SARS-CoV-

2 spike protein, S1, activates platelets to increase inflammatory

signalling, including increasing cytokine production from monocytes

(Fard et al., 2021; Li et al., 2022). S1 also induces structural

changes in blood-bornemolecules including the soluble plasma protein

fibrinogen, increasing their aggregation and making them resistant to

trypsinisation (Grobbelaar et al., 2021). Such aggregation can also be

initiated byprotein–protein interactions between fibrinogen andother

viruses or inflammatorymolecules (Kell et al., 2022).

Microclots similar to those triggered by S1 have recently been

found in the circulation of long COVID patients (Pretorius et al.,

2021). These microclots are resistant to fibrinolysis, with numerous

inflammatory molecules that may perpetuate both clotting pathology

and systemic endothelitis found trapped inside them. These entrapped

molecules include fibrinogen, von Willebrand factor, α2-antiplasmin

(which prevents clot breakdown via the typical fibrinolytic processes),

and plasminogen activator inhibitor-1 (Pretorius et al., 2021). The

result is a failed clotting physiology, which may ultimately cause

systemic tissue ischaemia and hypoxia (Figure 1).

Widespread cellular oxygen deprivation may result in many of the

persistent symptoms seen in long COVID, and could account for the

above-mentioned reductions in oxygen consumption observed after

CPET. Further investigation of these mechanisms, and potential inter-

ventions to combat them will be of importance for treating long

COVID, as recognised by the recent report from the US Government

Accountability Office (2022) noting autoimmune responses, viral

persistence, organ damage andmicroclotting as essential areas of long

COVID research.

10 MITOCHONDRIAL DYSFUNCTION AND
FATIGUE

In addition to disrupted tissue oxygen supply, oxygen reaching a

cell may not be able to generate sufficient ATP, due to aberrant

mitochondrial function. Early studies have hypothesised, based on

experimental observations, that that SARS-CoV-2 can hijack the

mitochondria and exploit them for survival (Singh et al., 2020).

Inflammasome activation due to mitochondrial compromise results

from ineffective interferon production as a response to viral infection,

increased oxidative stress and, in some, prolonged activation of the

innate immune system (Moriyama et al., 2020; Singh et al., 2020).

As the virus replicates in the mitochondria, their metabolic capacity

may be altered, perpetuating an enhanced inflammatory response

exacerbating disease severity. Experimental work carried out by Ajaz

et al. (2021) and others (Gibellini et al., 2020) confirmed evidence

of mitochondrial dysfunction, metabolic alterations with an increase

in glycolysis and high levels of mitokines in peripheral blood mono-

nuclear cells from COVID-19 patients, with the latter correlating

with disease severity. Host-dependent dysregulation of glycolysis and

mitochondrial metabolism was also seen in analysis of transcriptomic

data from nasopharyngeal swab, peripheral blood mononuclear cells,

lung biopsy and bronchoalveolar lavage from patients with COVID-19

(Moolamalla et al., 2021).

Insights fromCPET also lend support to a dysfunctional metabolism

contributing to post-COVID-19 exercise limitation. Reduced peak

oxygen consumption has been reported in several post-COVID CPET

studies, independent of cardiopulmonary limitations (Baratto et al.,

2021; Cassar et al., 2021; Clavario et al., 2021; Rinaldo, Mondoni,

Parazzini, Baccelli, et al., 2021; Singh et al., 2022), indicating reduced

peak oxygen extraction (Singh et al., 2022), and possibly an impairment

in fatty acid oxidation (de Boer et al., 2022). Whilst reduced oxygen
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ASTIN ET AL. 9

F IGURE 1 Clotting pathologies in long COVID. ROS, reactive oxygen species. Created with BioRender.com.

delivery due to aberrant peripheral vasomotor response (Evers et al.,

2022; Singh et al., 2022) can provide a possible explanation for these

findings (secondary to autonomic and endothelial dysfunction), altered

mitochondrial function also remains a possibility.

Metabolic imaging using non-invasive techniques such as 31P

magnetic resonance spectroscopy (31P-MRS) of the skeletal muscle

andheart hasdemonstratedabnormalities inmitochondrial respiration

in closely related conditions like ME/CFS (McCully et al., 1996;

Wang et al., 2021; Wong et al., 1992). Evidence of impaired

oxidative phosphorylation and increased skeletal muscle pH on 31P-

MRS among patients with fatigue-dominant long COVID has been

observed (B. Raman et al., unpublished work), raising the possibility

that similar mitochondrial dysfunction contributes to long COVID as

well.

In ME/CFS patients, many aspects of mitochondrial function

and metabolism appear to be altered, with reports of abnormal

mitochondrial respiratory chain complex activity, pyruvate

dehydrogenase activity (Brown et al., 2015; Fluge et al., 2017),

complex V inefficiency (Missailidis et al., 2020; Sweetman et al., 2020),

impaired neutrophil-derived ATP profile (Myhill et al., 2009), and

altered oxygen consumption of live plated cells (Tomas & Newton,

2018; Tomas et al., 2017). These data, combined with insights from

comprehensive proteomic, transcriptomic (Helliwell et al., 2020)

and metabolomic studies, (Armstrong et al., 2015; Fluge et al., 2017;

Naviaux et al., 2016; Smits et al., 2011) lend support to an energetic

explanation for symptoms among ME/CFS patients. Future research

will be needed to establish whether similar alterations occur in

long COVID patients, and whether metabolic therapies that restore

mitochondrial functionmay be of benefit to patients.

Several therapies (pharmacological and non-pharmacological) have

demonstrated their potential to improve mitochondrial function in

parallel disease models. These include coenzyme Q10 (Mizuno et al.,

2008), α-lipoic acid plus acetyl-L-carnitine (Logan & Wong, 2001),

NADH (Castro-Marrero et al., 2015, 2016; Forsyth et al., 1999),

resveratrol (Moriya et al., 2011), methylphenidate hydrochloride

(Montoya et al., 2018), N-acetyl cysteine (Logan & Wong, 2001; Poe

& Corn, 2020), ubiquinol, vitamin E (Logan & Wong, 2001), carefully

tailored exercise rehabilitation programmes and others. There are

currently numerous trials underway to evaluate the efficacy of some

of these in long COVID patients (accessible on https://clinicaltrials.

gov/ct2/home). A new addition to this list are endogenous metabolic

modulators, a mixture of branch chain amino acids and amino acid

derivatives, engineered in distinct ratios to reset multiple biological

pathways, improve cellular energetics and restore homeostasis to

optimisemitochondrial function. AXA-1125 is one such examplewhich

has been shown to improve metabolic and inflammatory pathways

in patients with non-alcoholic steatohepatitis (Hamill et al., 2021). A

randomised double-blind placebo-controlled clinical trial to evaluate

theefficacyof this therapy in fatigue-dominant longCOVID is currently

underway in the UK and seeks to test the hypothesis that restoration

of mitochondrial metabolism will improve fatigue in patients with long

COVID.

Long COVID is a multi-system condition causing dysfunction

of respiratory, cardiac and nervous tissue, at least in part
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10 ASTIN ET AL.

likely due to alterations in cellular energy metabolism and

reduced oxygen supply to tissue. Successful treatment strategies

are therefore likely to directly or indirectly target these

alterations.

11 REMOTE INSPIRATORY MUSCLE TRAINING
TO TARGET LONG COVID

Many people recovering from COVID-19 experience prolonged

symptoms, including SoB, which limit activities of daily living. Indeed,

the return to ‘normality’, whether throughactivities of daily living,work

or exercise, is often associated with an exacerbation of symptoms,

presenting a range of challenges for individuals recovering from

COVID-19 (Shelley et al., 2021). Given the vast number of individuals

affected, there is a need to identify safe, effective and sustainable

rehabilitative strategies.

Inspiratory muscle training (IMT) employs restricted airflow

breathing to elicit a hypertrophic response in the respiratory muscles

similar to that observed in the peripheral musculature following

a strength training programme (Enright et al., 2006). IMT has

been demonstrated to elicit clinically meaningful improvements

in dyspnoea and quality of life in chronic obstructive pulmonary

disease (COPD) (Beaumont et al., 2018) and to be well tolerated

and perceived as beneficial in those with bronchiectasis (McCreery

et al., 2021). As poor outcomes following COVID-19 infection are,

in part, predicted by respiratory muscle weakness (Severin et al.,

2020), IMT could represent a feasible, home-based rehabilitation

method.

The aim of the IMT project was to evaluate the potential of

home-based IMT to enhance and accelerate COVID-19 recovery.

Specifically, the study assessed the influence of 8 weeks of IMT on

respiratory function, SoB, exercise tolerance, daily physical activity,

and perceptions of health and well-being (McNarry et al., 2022).

Participants suffering ongoing symptoms for at least 4 weeks after

COVID-19 infection were randomly assigned to either the inter-

vention or control group, with a 4:1 weighting. IMT was associated

with significant and clinically meaningful increases in health-related

quality of life, with increases across all subdomains including SoB (IMT:

n = 111; controls: n = 37). The magnitude of improvement in the

severity of SoB was twice the level considered clinically meaningful.

IMT also improved respiratory muscle strength, estimated aerobic

fitness and moderate physical activity levels, with reductions in time

spent sedentary. Therefore, IMT may represent an important home-

based COVID-19 rehabilitation strategy. Given the diverse nature

of long COVID, further research is warranted on the individual

rehabilitation responses. The significant withdrawal rate observed

within this study (37% of those who received the intervention did

not attend the post-IMT session) highlights that no one strategy is

likely to be appropriate for all. To address this variability, larger studies

will be particularly valuable, tracking multiple patterns of symptoms

and response sensitivities to multiple interventions, for example in

integrated care pathways.

12 STIMULATE-ICP

Integrated care pathways (ICP) have proven effectiveness in

management of several long-term conditions by crossing the

whole pathway from primary to secondary care across the MDT

(Campbell et al., 1998). The ICP approach may allow long COVID to be

investigated and treated in a holistic manner, facilitating the urgently

needed, scalable and generalisable solutions.

The NIHR-funded STIMULATE-ICP (Symptoms, Trajectory,

Inequalities andManagement:Understanding Long-COVID toAddress

and Transform Existing Integrated Care Pathways) programme

will deliver knowledge to clinicians and scientists, evidence to

policymakers, and improved care to patients, while collecting real-

world data at scale (Banerjee et al., n.d.). The team spans a wide range

of relevant clinical and academic disciplines including primary care and

specialist services, epidemiology, mental health and health economics.

Over 2 years, using the newly established 90 long COVID clinics to

conduct large-scale research, the programme has three important

aspects.

First, the trajectory andhealthcareutilisationof individuals referred

to longCOVIDclinicswill be studiedusing routineEHR, specific patient

registries, and patient, health professional and policymaker interviews.

These data will inform policies to reduce individual and healthcare

system burden.

Second, a complex intervention trial will assess two components of

a novel ICP for long COVID: Coverscan (amulti-organMRI scan to rule

out organ impairment) and Living with COVID Recovery (a digitally

enhanced rehabilitation platform). The cluster-randomised trial will

include individuals with long COVID, referred to specialist clinics in 6–

10 areas (initially Hull, Derby, Leicester, Liverpool, London, Exeter) by

randomisingprimary carenetworks, to allow fordiversityof geography,

clinical service delivery design and socio-economic status. In addition,

a nested drug platform trial will randomise individuals to drugs

which could be repurposed for management of long COVID: initially

rivaroxaban (an anticoagulant), colchicine (an anti-inflammatory) and

famotidine/loratadine (antihistamines), based on proposed underlying

mechanisms supported by preclinical data, including coagulopathy and

inflammatory cytokine production (Figure 1). Further drug arms will

be added based on emerging data. The trial aims to recruit 4500

individuals over a 10–12month period. The primary outcome is fatigue

on the fatigue assessment scale at 3 months, but a wide range of

secondary outcomes (physical, psychological and functional) will be

collected and analysed.

Third, inequalities and stigma in long COVID care will be

investigated, and an intervention developed to improve referrals

from communities and groups under-represented in current care. A

mixed-methods study is also being conducted to compare and contrast

long COVID and its care with other long-term conditions to inform

future integrated care of these diseases beyond the pandemic.

Overall, the STIMULATE-ICP has the potential to provide policy-

relevant research informed by patients, health professionals and

policymakers in order to quickly establish evidence-based, effective

care for this new disease.
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13 CONCLUSIONS

With an ever-expanding patient population, long COVID is now a

common condition with societal as well as personal impacts that

necessitate a better understanding of the symptom trajectory, under-

lying mechanisms and treatments in order to improve population

health across the globe. Much progress has been made in terms

of testing paradigms that reveal the pattern of pathophysiological

changes to the respiratory, autonomic and cardiovascular systems,

which aid diagnosis as well as revealing the underlying functional

changes in long COVID and related conditions such as ME/CFS. A

number of mechanistic changes may underlie symptoms, including

disruption to cellular energy production due to mitochondrial

dysfunction, decreased oxygen supply due to coagulopathy and end-

othelial damage, and immune dysregulation. Rehabilitation can be

effective, but presents a resource challenge in providing sufficient

monitoring to match activity to physiological capabilities to avoid

exacerbating damage. Pharmacological treatments are likely to only

be effective in subpopulations of patients with specific symptoms

and underlying pathology. Multi-disciplinary approaches spanning

epidemiology, immunology, multi-system physiology and clinical

research are therefore required to understand the different, inter-

acting processes at play and to understand how to best combat them

to restore health. Some of these collaborative projects are currently

ongoing, but more will be needed in the future to support patients

suffering from long COVID.
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